
TPM1033

Регулятор для систем вентиляции

Руководство по эксплуатации

Содержание

Указания по безопасному применению	3
Отказ от ответственности	3
Используемые термины и аббревиатуры	3
Введение	
1 Назначение	5
1.1 Алгоритм 01	
1.2 Алгоритм 02	
1.3 Алгоритм 03	
1.4 Алгоритм 04	
1.5 Алгоритм 05	
2 Перечень входных и выходных сигналов	
3 Индикация и управление	
3.1 Основные элементы управления	
3.2 Структура меню	
3.3 Главный экран	14
3.4 Экран «Быстрая настройка»	15
3.5 Секретность	
4 Управление установкой	16
4.1 Режимы работы	
4.2 Определение сезона	17
4.2.1 Дежурный режим в летний период	17
4.2.2 Дежурный режим в зимний период	
4.3 Запуск вентсистемы в летний период	
4.4 Запуск вентсистемы в зимний период	20
4.4.1 Водяной калорифер зимой	
4.4.2 Электрический калорифер зимой	21
4.5 Тестирование входных и выходных сигналов	
5 Описание алгоритма работы	
5.1 Настройка входов и выходов	
5.2 Управление воздушным клапаном притока	25
5.3 Управление вентилятором притока	26
5.4 Датчик давления на фильтре	
5.5 Управление водяным нагревателем	
5.5.1 Контроль обратного теплоносителя	27
5.5.2 Режимы работы узла	29
5.6 Управление электрическим нагревателем	
5.7 Управление водяным охладителем	32
5.8 Управление ККБ	33
5.9 Использование недельных таймеров и таймера День/Ночь.	
5.10 Условия коррекции уставки температуры приточного	воздуха
(каскадное регулирование)	
5.11 Список аварий	
5.12 Журнал аварий	38
5.13 Сброс настроек	38

6 Сетевой интерфейс	3
6.1 Сетевой интерфейс	3
6.2 Карта регистров	4
7 Меры безопасности	4
8 Монтаж	
9 «Быстрая» замена	4
10 Первое включение	4
11 Схема подключения	
11.1 Монтаж электрических цепей	4
11.2 Схема подключения Алгоритм 01	
11.3 Схема подключения Алгоритм 02	4
11.4 Схема подключения Алгоритм 03	4
11.5 Схема подключения Алгоритм 04	4
11.6 Схема подключения Алгоритм 05	4
12 Технические характеристики	4
13 Условия эксплуатации	5
14 Техническое обслуживание	5
15 Маркировка	
16 Упаковка	
17 Транспортирование и хранение	
18 Комплектность	
19 Гарантийные обязательства	
ПРИЛОЖЕНИЕ А. Настройка регулятора	
ПРИЛОЖЕНИЕ Б. Установка времени и даты	5

Указания по безопасному применению

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ используется для предупреждения о непосредственной угрозе здоровью. Возможные последствия могут включать в себя смерть, постоянную или длительную нетрудоспособность.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ используется, чтобы предупредить о повреждении имущества и устройств. Возможные последствия могут включать в себя повреждения имущества, например, прибора или подключенных к нему устройств.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ используется, чтобы предупредить о потенциально опасной ситуации. Возможные последствия могут включать в себя незначительные травмы.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ используется для дополнения, уточнения, толкования основного текста раздела/подраздела и/или пояснения специфических аспектов работы с прибором.

Отказ от ответственности

Ни при каких обстоятельствах компания ООО «Производственное объединение ОВЕН» и его контрагенты не будут нести юридическую ответственность, и не будут признавать за собой какие-либо обязательства, в связи с любым ущербом, который может возникнуть в результате установки или использования данного оборудования с нарушением действующей нормативно-технической документации.

Для получения более подробной информации свяжитесь с компанией ООО «Производственное объединение ОВЕН» (контакты приведены в паспорте на прибор) и его контрагентами по применению изделий в условиях, критических в отношении жизни человека, или в условиях, когда требуется особо высокая надежность.

Используемые термины и аббревиатуры

PDS — датчик перепада давления.

Впр – вентилятор притока.

ВКп – воздушный входной клапан с обогревом.

ВРГ – верхняя рабочая граница.

ЖКИ – жидкокристаллический индикатор.

ККБ – компрессорно-конденсаторный блок.

ИМ – исполнительный механизм.

ТО – водяной теплообменник нагрева (водяной калорифер).

ТОэ – электрический теплообменник нагрева (электрокалорифер).

ТЭН – термоэлектронагреватель.

 $\Phi \mathbf{n}$ — фильтр приточный.

H3 – нормально-закрытый.

НО – нормально-отрытый.

НРГ – нижняя рабочая граница.

ХО – водяной охладитель.

ХО фреон – фреоновый охладитель.

шим – широтно-импульсная модуляция.

ЭКН – электрический калорифер нагрева (электрокалорифер).

Введение

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, технической эксплуатацией и обслуживанием контроллера систем вентиляции ТРМ1033, в дальнейшем по тексту именуемого «ТРМ1033» или «прибор».

Подключение, регулировка и техобслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Настоящее руководство составлено в расчете на то, что им будет пользоваться подготовленный и квалифицированный персонал, аттестованный по действующим стандартам, регламентирующим применение электрооборудования, а именно:

- 1. Любой инженер по вводу в эксплуатацию, или сервисному обслуживанию, должен быть подготовлен и обладать достаточной квалификацией в соответствии с местными и государственными стандартами, требуемыми для выполнения этой работы, а также ознакомлен со всей документацией, связанной с данным прибором. Техническое обслуживания должно выполняться в соответствии с установленными мерами безопасности.
- 2. Операторы полностью собранного оборудования (см. Примечание) должны быть ознакомлены с эксплуатационной документацией и установленными мерами безопасности, которые связаны с эксплуатацией полностью собранного оборудования.

1 ПРИМ Поняті

ПРИМЕЧАНИЕ

Понятие «полностью собранное оборудование» относится к устройству, сконструированному третьей стороной, в котором содержится или применяется прибор, описанный в руководстве.

Прибор изготавливается в различных модификациях, зашифрованных в коде полного условного обозначения:

Пример записи обозначения прибора при заказе: ТРМ1033-24.03.00.

1 Назначение

Контроллер предназначен для погодозависимого управления системой приточной вентиляции (далее — «установка»).

ТРМ1033 в комплекте с датчиками и ИМ:

- контролирует и регулирует температуру воздуха в помещении;
- контролирует и регулирует дополнительные параметры системы:
 - температуру приточного воздуха;
 - обратную воду (алгоритм с водяным калорифером нагрева).
- управляет основными узлами вентиляционной системы, контролирует исправность подключенного оборудования.

Руководство по эксплуатации распространяется на прибор, выпущенный в соответствии с ТУ 26.51.70–020–46526536–2017.

1.1 Алгоритм 01

Контроллер для систем приточной вентиляции с водяным калорифером нагрева.

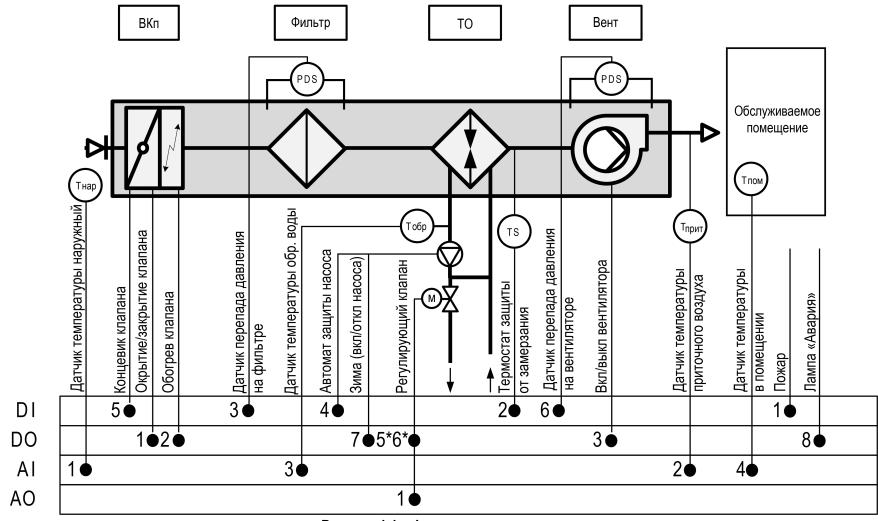


Рисунок 1.1 – Функциональная схема

1.2 Алгоритм 02

Контроллер для систем приточной вентиляции с электрическим калорифером нагрева.

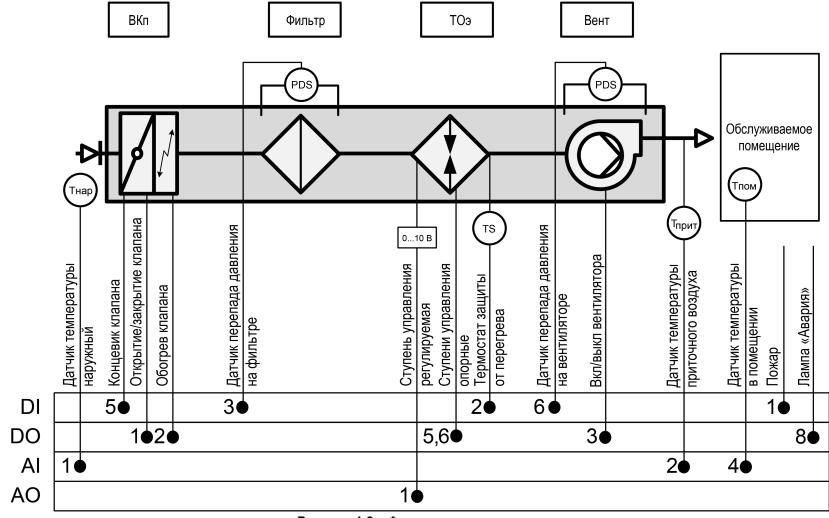


Рисунок 1.2 – Функциональная схема

1.3 Алгоритм 03

Контроллер для систем приточной вентиляции с водяным калорифером нагрева и водяным охладителем.

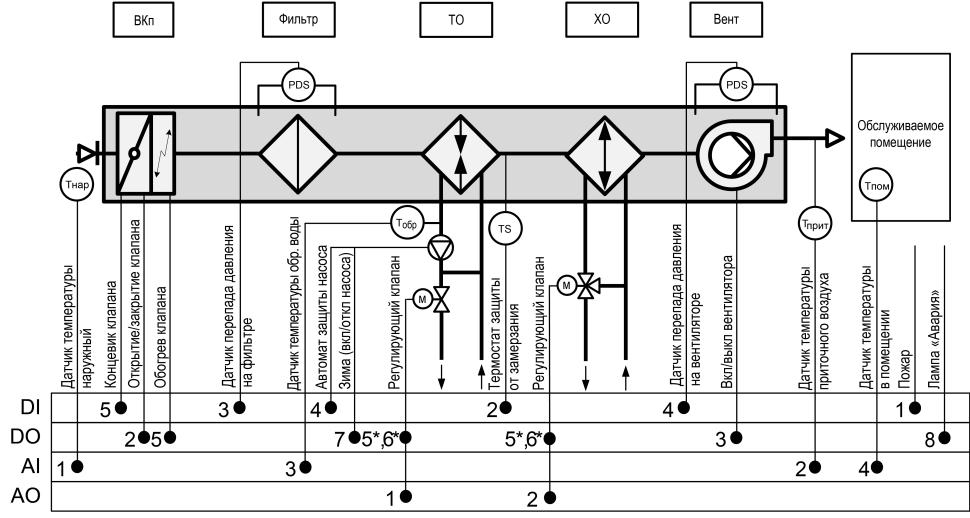


Рисунок 1.3 – Функциональная схема

1.4 Алгоритм 04

Контроллер для систем приточной вентиляции с водяным калорифером нагрева и фреоновым охладителем.

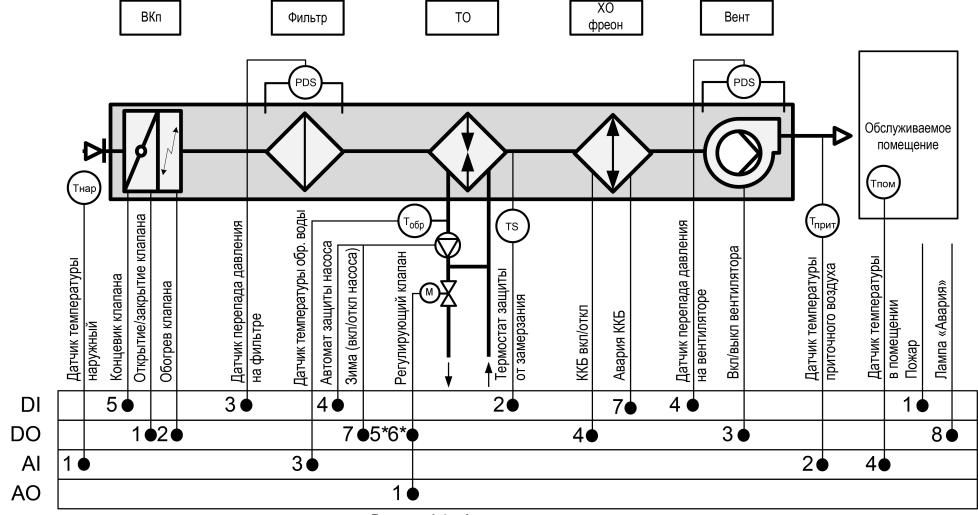


Рисунок 1.4 – Функциональная схема

1.5 Алгоритм 05

Контроллер для систем приточной вентиляции с электрическим калорифером нагрева и фреоновым охладителем.

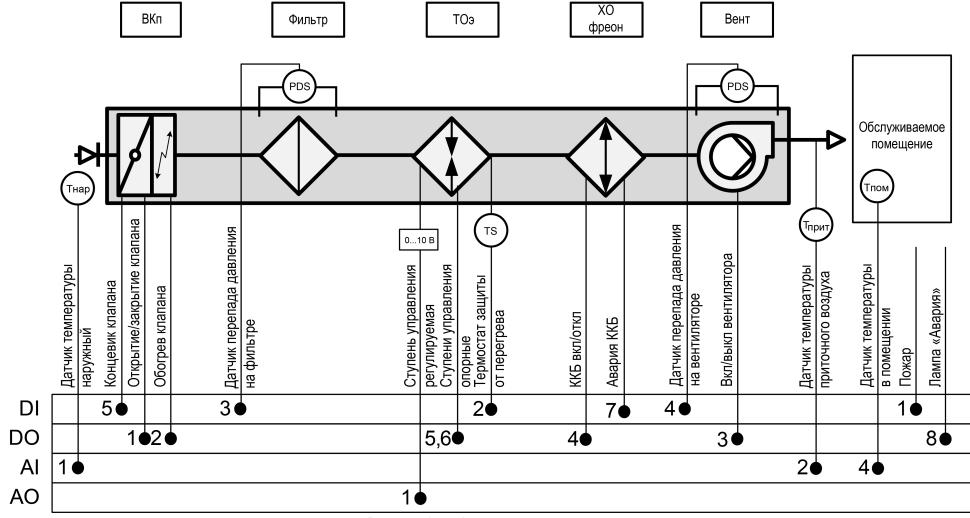


Рисунок 1.5 – Функциональная схема

2 Перечень входных и выходных сигналов

Алгоритм	DI 1	DI 2	DI 3	DI 4	DI 5	DI 6	DI 7	DI 8	Al 1	Al 2	Al 3	Al 4
№ 1	Пожар	Капилляр	PDS Флтр	Ав.Насос	ВКп.Конц	PDS Вент		Старт/Стоп	Тнар	Тприт	Тобр	Тпом
Nº 2	Пожар	Перегрев	PDS Флтр	_	ВКп.Конц	PDS Beнт		Старт/Стоп	Тнар	Тприт	_	Тпом
№ 3	Пожар	Капилляр	PDS Флтр	Ав.Насос	ВКп.Конц	PDS Beнт		Старт/Стоп	Тнар	Тприт	Тобр	Тпом
Nº 4	Пожар	Капилляр	PDS Флтр	Ав.Насос	ВКп.Конц	PDS Beнт	Ав.ККБ	Старт/Стоп	Тнар	Тприт	Тобр	Тпом
№ 5	Пожар	Перегрев	PDS Флтр	_	ВКп.Конц	PDS Beнт	Ав.ККБ	Старт/Стоп	Тнар	Тприт	_	Тпом
	1			I.	1	1	L					
	DO 1	DO 2	DO 3	DO 4	DO 5	DO 6	DO 7	DO 8	AO 1	AO 2		
№ 1	ВКп.Откр	ВКп.Обгр	Вп вкл	_	КЗР откр	КЗР закр	Hacoc TO	АвОбщ	КЗР Нагр			
№ 2	ВКп.Откр	ВКп.Обгр	Вп вкл	_	ЭКН Ст2	ЭКН Ст3		АвОбщ	ЭКН Ст1			
№ 3	ВКп.Откр	ВКп.Обгр	Вп вкл	_	КЗР откр	КЗР закр	Hacoc TO	АвОбщ	КЗР Нагр	КЗР Охл		
Nº 4	ВКп.Откр	ВКп.Обгр	Вп вкл	ККБ вкл	КЗР откр	КЗР закр	Hacoc TO	АвОбщ	КЗР Нагр			
№ 5	ВКп.Откр	ВКп.Обгр	Вп вкл	ККБ вкл	ЭКН Ст2	ЭКН Ст3		АвОбщ	ЭКН Ст1			

Входы:

- Пожар Датчик пожара (Н3);
- Капилляр Термостат защиты от замерзания, капиллярный термостат (Н3);
- Перегрев Защита калорифера по перегреву (Н3);
- PDS Флтр Датчик перепада давления на приточном фильтре (HO);
- Ав.Насос Автомат защиты насоса (Н3);
- ВКп.Конц Концевой выключатель приточного воздушного клапана (НО);
- PDS Вент Датчик перепада давления на приточном вентиляторе (HO);
- Ав.ККБ ККБ неисправен (Н3);
- Тнар Температура наружного воздуха;
- Тприт Температура приточного воздуха:
- Тобр Температура обратной воды;
- Тпом Температура воздуха в помещении;
- Старт/Стоп кнопка запуска/останова.

Выходы:

- ВКп.Откр Открыть приточный воздушный клапан;
- ВКп. Обгр Включить обогрев приточного воздушного клапана;
- Вп вкл Включить приточный вентилятор;
- ККБ вкл Включить ККБ;
- КЗР откр Команда на открытие клапана теплообменника;
- КЗР закр Команда на закрытие клапана теплообменника;
- Насос ТО Включить циркуляционный насос;
- ЭКН Ст2 Включить вторую ступень электрического калорифера;
- ЭКН Ст3 Включить третью ступень электрического калорифера;
- АвОбщ Включить лампу «Авария»;
- КЗР Нагр Процент открытия клапана водяного нагревателя;
- КЗР Охл Процент открытия клапана водяного охладителя;
- ЭКН Ст1 Аналоговый сигнал 0...10 В на управление мощностью первой ступени электрического калорифера.

3 Индикация и управление

3.1 Основные элементы управления

На лицевой панели прибора расположены элементы индикации и управления (см. *рисунок 3.1*):

- двухстрочный 16-разрядный ЖКИ;
- два светодиода;
- шесть кнопок.

ПРИМЕЧАНИЕ Доступ к некоторым пунктам меню защищен паролем. Значение паролей настраивается (Секретность/Пароль). Если значение 0, то ввод пароля отключен (по умолчанию отключен).

Для редактирования значений следует:

- 1. С помощью кнопки SEL выбрать нужный параметр (выбранный параметр начинает мигать).
- 2. С помощью кнопок и установить нужное значение. Во время работы с числовыми параметрами комбинация кнопок ALT + / меняет редактируемый разряд.
- 3. Для сохранения значения параметра:
 - следует нажать кнопку OK);
 - и перейти к следующему параметру следует нажать SEL для отмены следует нажать ESC.

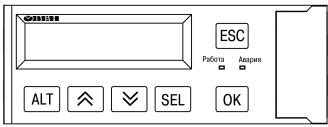


Рисунок 3.1 – Лицевая панель прибора

Таблица 3.1 - Назначение кнопок

Кнопка	Назначение
	Смещение видимой области вверх или вниз. Перемещение по пунктам меню
ALT	Применяется в комбинациях с другими кнопками. При удержании более 6 секунд — переход в системное меню
SEL	Выбор параметра
OK	Сохранение измененного значения
ESC	Выход/отмена. При удержании более 6 секунд выход из системного меню. Возврат на Главный экран
ALT , OK	Переход с Главного экрана» в меню. Перемещение по экрану
ALT + SEL	Переход в меню Аварии
ALT + NIN ALT +	Изменение редактируемого разряда (выше или ниже)

Таблица 3.2 - Назначение светодиодов

Режим	Светодиод «Работа»	Светодиод «Авария»
Дежурный режим	_	_
Рабочий режим	Светится	_
Тест Вх/Вых	_	Мигает
Авария	_	Светится

3.2 Структура меню

ПРИМЕЧАНИЕ

Здесь и далее приведены данные всех модификаций. В зависимости от применяемого алгоритма, некоторые экраны и пункты могут отсутствовать.

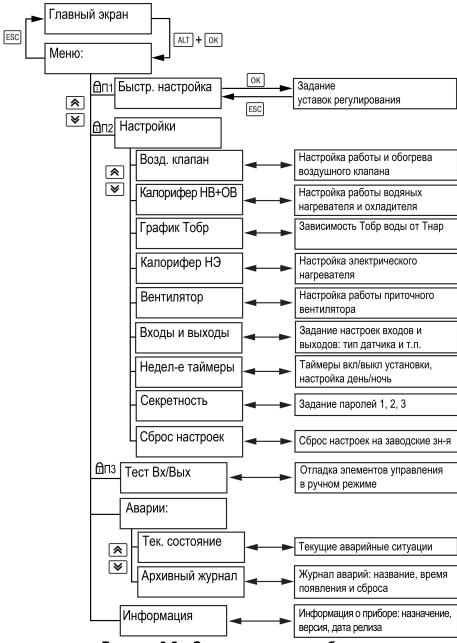


Рисунок 3.2 – Структура меню прибора

3.3 Главный экран

Таблица 3.3 - Главный экран

Экран	Описание	Диапазон
ДежРеж Прит:24,5	Текущее состояние системы	ДежРеж, ПрогВК, ПрогТО, ПадУст, Продув, Работа, Авария, ТестІО
	Название температуры по которой осуществляется регулирование	Прит, Пом
	Текущее значение температуры по которой осуществляется регулирование	
Лето Уст: 25,0	Текущий сезон	
	Наличие корректировок уставки	Уст, УстК
	Текущее значение уставки	
Управление: Стоп	Переключения режимов Старт/Стоп	Стоп, Пуск
Темп: Уст: Тек:		
Прит:25,0 24,5	Текущая уставка температуры приточного воздуха (после всех корректировок)	099
	Температура приточного воздуха	-100495
Обр: 60,3 63,4	Уставка температуры обратной воды	0150
	Температура обратной воды	0150
Пом: 25,0 21,6	Уставка температуры воздуха в помещении	099
	Температура воздуха в помещении	-100495
Hap: —10,5	Температура наружного воздуха	
ВКп:Закр/Прогрев	Текущее положение воздушного клапана	Закр, Откр
	Наличие обогрева воздушного клапана	Обогрев
Вп: Стоп/Перепад	Текущее состояние приточного вентилятора	Стоп, Пуск
	Наличие перепада давления на приточном вентиляторе	Перепад
КЗР Нагрев: 0,00	Процент открытия клапана теплообменника	0100
КЗР Охл—е: 0,00	Процент открытия клапана теплообменника	0100

Продолжение таблицы 3.3

Экран	Описание	Диапазон
DO: ЗакрОткр	Клапан теплообменника меньше	Закр
	Клапан теплообменника больше	Откр
Калорифер Электр		
Ступень N1: 0	Текущая мощность первой ступени калорифера	0100
Ступень N2:Откл	Включить вторую ступень электрического калорифера	Вкл, Откл
Ступень N3:Откл	Включить третью ступень электрического калорифера	Вкл, Откл
Аварии → ALT+SEL	Информация: для перехода на экран аварий нажать сочетание кнопок ALT и SEL	
Меню →ALT+OK	Информация: для перехода в главное меню нажать сочетание кнопок ALT и	

3.4 Экран «Быстрая настройка»

Пункт меню «Быстрая настройка» содержит параметры прибора, требующие частой корректировки.

3.5 Секретность

1 ПРИМЕЧАНИЕ По умолчанию пароли не заданы.

С помощью пароля ограничивается доступ к определенным группам настроек (Меню: Настройки – Секретность).

Пароли блокируют доступ:

- Пароль 1 к группе Быстр. Настройка;
- Пароль 2 к группе Настройки;
- Пароль 3 к группе **Тест Вх/Вых**.

Для сброса паролей следует выполнить действия:

- перейти в Меню прибора;
- нажать комбинацию кнопок (<u>ALT</u> + <u>ESC</u>);
- набрать пароль 118 и подтвердить сброс.

Таблица 3.4 - Меню/Быстрая настройка

Экран	Описание	Диапазон
Быстр. Настройка		
Уставки темп:		
Прит: 25,0	Уставка температуры приточного воздуха	099
Ночь.Прит: 15,0	Уставка температуры приточного воздуха в ночной период времени	099
Помещение: 25,0	Уставка температуры воздуха в помещении	099
Зима/Лето: 8,0	Температура наружного воздуха, соответствующая смене сезона с «Лето» на «Зима»	099
Сезон: Авто/Зима	Способ определения сезона	Авто, Ручн
	Кнопка переключения сезона / отображение текущего сезона	Зима, Лето
Задержка вкл ПО:		
Т.ВклПО 5с	Задержка запуска работы алгоритма после подачи питания на прибор, в секундах	0600

Таблица 3.5 - Меню/Настройки/Секретность

Экран	Описание	Диапазон
Секретность		
Пароль 1: 0	Пароль доступа в меню Быстр. Настройка	0 — нет 19999
Пароль 2: 0	Пароль доступа в меню Настройки	0 — нет 19999
Пароль 3: 0	Пароль доступа в меню Тест Вх/Вых	0 — нет 19999

4 Управление установкой

4.1 Режимы работы

После загрузки контроллер переходит в **Дежурный** режим. При первом запуске подается команда «Сброс аварий», пока не произойдет первый переход в режим **Работа**.

Для перехода из Дежурного режима в режим Работа следует:

- с Главного экрана переключить режимы (Управление: Стоп → Старт);
- подать команду на запуск по сети.

Обратный переход производится аналогично или автоматически по расписанию при использовании недельных таймеров (см <u>раздел 5.9</u>).

Режим **Работа** предполагает последовательное выполнение следующих действий:

- Прогрев ВК обогрев воздушной заслонки на время $t_{\text{прогр}}$ вкп;
- **Прогрев ТО** прогрев водяного калорифера нагрева;
- Пад. Уставка для безударного перехода в режим работы (только для алгоритмов с водяным калорифером нагрева);
- Работа поддержание температуры по уставкам;
- **Продув** используется для исключения случаев перегрева калорифера в случае выключения установки (только для алгоритмов с электрическим калорифером).

Для перехода из режимов **Дежурного** или **Авария** в режим **Тест** следует переключить **Меню/Тест Вх/Вых/Режим: Авто** → **Тест**. Обратный переход производится аналогично.

В режим **Авария** переход со всех режимов происходит в случае возникновения критической аварии (см. <u>раздел 5.11</u>). Обратный переход производится либо после устранения причины аварии, либо после подачи команды «Сброс Аварии» (Меню/Аварии/Тек. Состояние/Сброс Аварий \rightarrow Сбросить).

Выбранный режим сохраняется и после отключения питания. (*Исключение*: режим **Тест** — прибор перейдет в режим **Дежурный**).

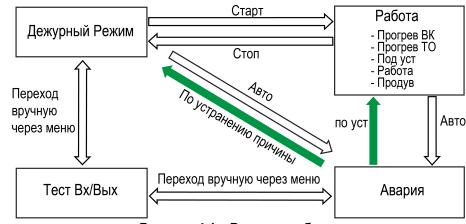


Рисунок 4.1 – Режимы работы

4.2 Определение сезона

Работа прибора зависит от текущего сезона (см. *рисунок 4.2*): **Зима** или **Лето**. Определение сезона осуществляется следующими способами:

- задается вручную (Быстр. настройка/Сезон: Ручн/Зима);
- определяется автоматически (Быстр. настройка/Сезон: Авто/Зима) в зависимости от температуры наружного воздуха ТЗИМа/ЛЕТО (Быстр. настройка Зима/Лето: 8.0).

В случае ручного задания, выбранное значение режима сохраняется после выключения питания.

В автоматическом режиме переключение в сезон **Зима** происходит в случае снижения температуры ниже заданного порога (см. *рисунок 4.2*).

Обратное переключение в сезон **Лето** происходит, когда температура наружного воздуха превысила заданный порог более, чем на **Т3има/лето** + $\Delta_{\text{лето}}$, где $\Delta_{\text{лето}}$ = 3 °C. $\Delta_{\text{лето}}$ является нередактируемым параметром.

Если выбран режим Зима:

- процедура прогрева нагревателя во время запуска будет активна независимо от наружной температуры;
- насосы в контурах водяных нагревателей включены;
- нагрев разрешен;
- охлаждение запрещено.

Если выбран режим Лето:

- насосы в контурах нагревателей выключены;
- нагрев запрещен;
- охлаждение разрешено.

4.2.1 Дежурный режим в летний период

В **Дежурном** режиме при сезоне **Лето** контроллер производит следующие действия:

- все исполнительные механизмы выключены;
- отслеживаются возможные аварийные ситуации.

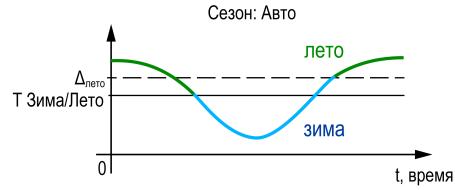


Рисунок 4.2 - Определение сезона

4.2.2 Дежурный режим в зимний период

4.2.2.1 Водяной калорифер

В **Дежурном** режиме при сезоне **Зима** контроллер производит следующие действия:

- для защиты от замораживания контролируется температура обратной воды $T_{\text{обр}}$;
- если **Т**обр **< НРГ**, клапан открывается на 100 %, прогревая калорифер;
- в случае достижения уставки **ВРГ** клапан продолжает быть в открытым на время **t**_{пр. калор.}, затем полностью закрывается.
- заслонки и вентилятор выключены, насос циркуляции включен;
- отслеживаются возможные аварийные ситуации:

- BP
$$\Gamma$$
 = T_{ofp} + Δ_{ofp} ;

- HP
$$\Gamma$$
 = T_{ofp} - Δ_{ofp} .

Тобр вычисляется по графику Меню/Настройки/График Тобр.

Добр задается в параметрах **Меню/Настройки/Калорифер НВ/Обр. вода/ Делт. граф/Туст.обр**.

4.2.2.2 Электрический калорифер

В **Дежурном** режиме при сезоне **Зима** контроллер производит следующие действия:

- все исполнительные механизмы выключены:
- отслеживаются возможные аварийные ситуации.

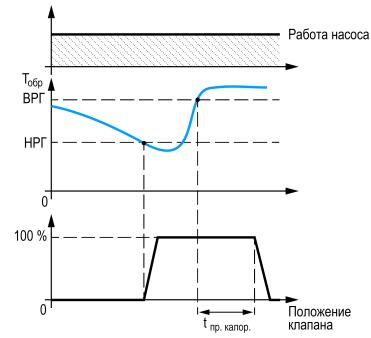


Рисунок 4.3 – Дежурный режим в зимний период

4.3 Запуск вентсистемы в летний период

После перевода контроллера в режим Работа, открывается воздушная заслонка. Далее, с задержкой $\mathbf{t}_{\mathsf{3an}}$ вент., запускается вентилятор приточного воздуха (Меню/ Настройки/ Вентилятор/Задержки/Включения).

Для алгоритмов с ККБ:

ККБ включается одновременно с открытием воздушной заслонки. Регулирование температуры происходит по датчику температуры в помещении (T_{nom}). Если $T_{nom} > T_{vct\ nom} + \Delta_{nom}$ включается ККБ, если $T_{nom} < T_{уст nom} - \Delta_{nom}$, ККБ выключается. $T_{уст nom}$ задается в Меню/Быстр.настройка/Уставки/Темп. Помещение.

∆пом — нередактируемый параметр равный 0,5 °C.

ПРИМЕЧАНИЕ

1 По умолчанию датчик температуры в помещении не подключен. Для его включения следует зайти в Меню/Настройки/Входа и выхода/Тпом Исп в упр Да. Без датчика в помещении алгоритм не запустится!

Для алгоритмов с водяным охладителем:

По истечении времени $\mathbf{t}_{\mathbf{3an}\ \mathbf{Beht}}$, контроллер начинает регулировать температуру воздуха, путем открытия или закрытия клапана водяного охладителя. Регулирование температуры происходит приточном датчику температуры ($\mathsf{T}_{\mathsf{прит}}$). Если $\mathsf{T}_{\mathsf{прит}} > \mathsf{T}_{\mathsf{уст.прит}} + \Delta_{\mathsf{прит}}$ — клапан открывается. Если $\mathsf{T}_{\mathsf{прит}} < \mathsf{T}_{\mathsf{VCT},\mathsf{прит}} - \Delta_{\mathsf{прит}}$ — клапан закрывается. Туст прит задается в Меню/ Быстр.настройка/ Уставки/Прит.

∆прит — нередактируемый параметр равный 0,5 °C.

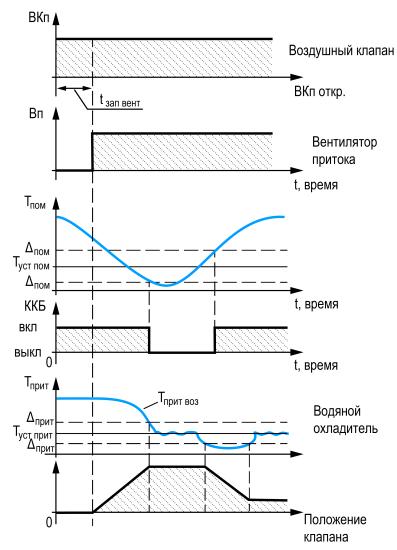


Рисунок 4.4 – Запуск вентсистемы в летний период

4.4 Запуск вентсистемы в зимний период

4.4.1 Водяной калорифер зимой

В Дежурном режиме при сезоне Зима контроллер производит следующие действия:

- 1. После перевода контроллера в режим **Работа**, включается обогрев воздушной заслонки на время t_p вкл. Заслонка считается прогретой.
- 2. По истечении времени **t**_{пр} вк_п, контроллер включит прогрев калорифера. Клапан открывается на 100 %, прогревая калорифер до расчетной температуры **BPГ**, далее включается задержка прогрева **t**_{прогр}.
- 3. По истечении времени $t_{прогр}$, открывается воздушная заслонка.
- 4. С задержкой $t_{3an \ Beht}$, запускается вентилятор приточного воздуха.
- 5. После открытия воздушного клапана, уставка температуры начинает плавно снижаться к номинальному значению.

$$BP\Gamma = T_{ofp} + \Delta_{ofp}$$

 $T_{\text{обр}}$ вычисляется по графику Меню/Настройки/График Тобр.

Добр задается в параметрах **Меню/Настройки/Калорифер НВ/Обр. вода/ Делт. граф/Туст.обр**.

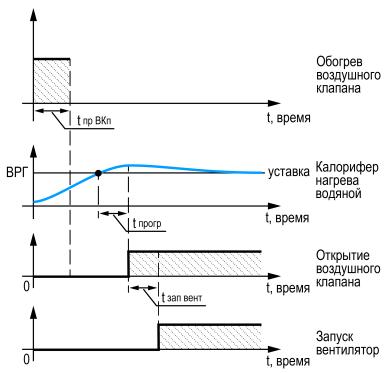


Рисунок 4.5 – Запуск вентсистемы в зимний период

4.4.2 Электрический калорифер зимой

При сезоне Зима контроллер выполняет действия:

- 1. После перевода контроллера в режим **Работа**, включается обогрев воздушной заслонки на время **t**nporp **BKn**. Заслонка считается обогретой.
- 2. По истечении времени **t**обогр **вк**п, включаются ТЭН калорифера нагрева.
- 3. Одновременно с включением ТЭН, отрывается воздушная заслонка.
- 4. С задержкой $t_{3 an Beht}$, запускается вентилятор приточного воздуха.
- 5. После запуска вентилятора, уставка температуры начинает плавно снижаться к номинальному значению.

В случае выключения контроллера, формируется задержка $t_{продув}$ для отключения вентилятора и воздушного клапана. Это позволяет снизить температуры ТЭН электронагревателя до безопасных значений.

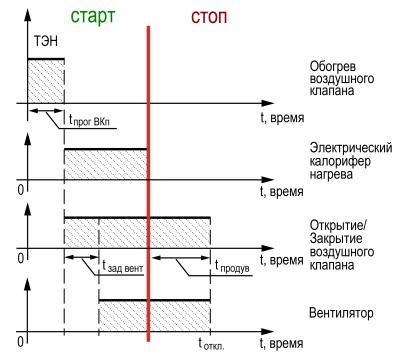


Рисунок 4.6 – Работа электрокалорифера

4.5 Тестирование входных и выходных сигналов

Таблица 4.1 - Меню/Тест Вх/Вых

Экран	Описание	Диапазон
Тест Вх/Вых		
Режим: Авто	Переход в тестовый режим	Авто, Тест
Выходы		
DO 1:ВКп.Откр-0	Открыть приточный воздушный клапан	
DO 2:ВКп.Обгр-0	Включить обогрев приточного воздушного клапана	
DO 3:Вент.пр -0	Включить приточный вентилятор	
DO 4:ККБ вкл -0	Включить ККБ	
DO 5:9KH CT2-0	Включить вторую ступень электрического калорифера	
DO 6:ЭКН Ст3 -0	Включить третью ступень электрического калорифера	
DO 5:КЗР откр-0	Открыть клапан	
DO 6:КЗР закр-0	Закрыть клапан	
DO 7:Hacoc TO-0	Включить циркуляционный насос ТО	
DO 8:АвОбщ -0	Включить сигнал аварии	
АО 1:ЭКН Ст1 -0	Включить первую ступень электрического калорифера	
AO1:K3P Harp-0	Открыть клапан нагрева	
АО 2:КЗР Охл -0	Открыть клапан охлаждения	
DI 1:Пожар -0	Датчик пожара (Н3)	1 — норма, 0 — авария
DI 2:Термостат0	Защита калорифера по перегреву (НЗ)	1 — норма, 0 — авария
DI 3:PDS Флтр-0	Датчик перепада давления на приточном фильтре (HO)	0 — норма, 1 — авария
DI 4:Ав.Насос-0	Автомат защиты насоса (Н3)	1 — норма, 0 — авария
DI 5:ВКп.Конц-0	Концевой выключатель приточного воздушного клапана (HO)	0 — открыт, 1 — закрыт
DI 6:PDS.Вент-0	Датчик перепада давления на приточном вентиляторе (HO)	0 — нет перепада, 1 — есть
DI 7:AB.KKБ -0	ККБ неисправен (Н3)	1 — норма, 0 — авария

Продолжение таблицы 4.1

Экран	Описание	Диапазон
DI 8:Пуск/Стоп -0	Кнопка запуска/останова	0 — Стоп, 1 — Пуск
АІ 1 Тнар: -10,3	Температура наружного воздуха	
АІ 2 Тприт: 18,3	Температура приточного воздуха	
АІ 3 Тобр: 60,3	Температура обратной воды	
АІ 4 Тпом: 21,6	Температура воздуха в помещении	

ВНИМАНИЕ

Возможность тестирования входов/выходов предусмотрена только для проведения пусконаладки. Не следует оставлять контроллер в тестовом режиме без наблюдения — это может привести к повреждению оборудования!

Реализованы следующие возможности проверки:

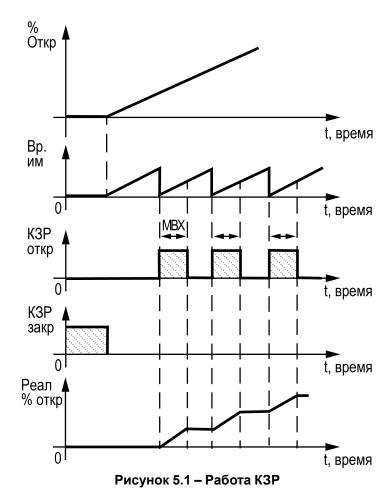
- работоспособности дискретных и аналоговых датчиков;
 срабатывание и правильность подключения исполнительных механизмов.

5 Описание алгоритма работы

5.1 Настройка входов и выходов

Тип датчика задается для каждого входа отдельно.

Если измеренное значение отличается от фактического, то рекомендуется ввести корректировку: $\mathbf{T'}_{\mathbf{изм}} = \mathbf{T}_{\mathbf{изм}} + \mathbf{\Delta}$ (Параметр **Сдвиг** для каждого входа отдельно).


В алгоритмах с водяным нагревателем и/или водяным охладителем предусмотрено два типа управления регулирующим клапаном:

- дискретное (сигналы «КЗР открыть» и «КЗР закрыть»);
- аналоговое (сигналы «КЗР нагрев» и «КЗР охлаждение»).

Тип управления для каждого нагревателя задается отдельно. Если выбрано аналоговое управление, то рассчитанный в алгоритме процент открытия клапана преобразуется в сигнал X...10 В, где X — минимальное напряжение, задается в настройках (типовые значения: 0, 0,5 и 2 В — зависят от типа привода клапана).

Если выбрано дискретное управление, то для достижения соответствия между расчетным и фактическим положением клапана сервопривода подаются импульсы «КЗР открыть» или «КЗР закрыть» определенной длительности. Приросту процента открытия клапана от 0 до 100 соответствует импульс длительностью, равной времени полного хода сервопривода (параметр **ПВX**).

Прирост определяется как разница между новым рассчитанным и текущим значением. Для предотвращения лишних колебаний, импульс на сервопривод подается только, если его длительность больше минимального времени хода (параметр **MBX**). Если рассчитанный процент равен **100**, то это соответствует открытому положению клапана — на сервопривод подается команда «КЗР открыть». Если рассчитанный процент равен **0**, то это соответствует закрытому положению клапана — на сервопривод подается команда «КЗР закрыть».

В алгоритмах с электрическим нагревателем предусмотрено два типа управления ТЭН:

- ШИМ;
- Аналоговое управление.

Если выбран режим аналогового управления, то расчетная мощность будет преобразована в выходной сигнал 0...10 В.

Если выбран режим ШИМ, то на выходе будут формироваться импульсы с заданным периодом (**Период ШИМ**).

|ПРЕДУПРЕЖДЕНИЕ

Для корректной работы прибора вносить изменения в параметры «Прибор», «Входы», «Выходы» **ЗАПРЕЩЕНО!**

В Системном меню фильтр на аналоговых входах (Системное меню/ Входы/ Аналоговые/Фильтр) должен стоять не менее 0,100 с (по умолчанию 0,300).

Таблица 5.1 - Меню/ Настройки/ Входы и Выходы

Экран	Описание	Диапазон
Входа и Выхода		
Тнар: РТ1000	Тип датчика температуры наружного воздуха	PT1000, PT100, NTC10K, Ni1000
Сдвиг: 0,000	Корректировка измеренного значения	-100100
Тприт: РТ1000	Тип датчика температуры приточного воздуха	PT1000, PT100, NTC10K, Ni1000
Сдвиг: 0,000	Корректировка измеренного значения	-100100
Тобр: РТ1000	Тип датчика температуры обратной воды	PT1000, PT100, NTC10K, Ni1000
Сдвиг: 0,000	Корректировка измеренного значения	-100100
Тпом: РТ1000	Тип датчика температуры воздуха в помещении	PT1000, PT100, NTC10K, Ni1000
Исп. В упр:Нет	Вкл/выкл функцию поддержания температуры в помещении	Да, Нет
Сдвиг: 0,000	Корректировка измеренного значения	-100100
КЗР Нагрев:		
Тип упр: Дискр	Тип управляющего сигнала на клапан	Аналог, Дискр
Мин напр: 0,0В	Напряжение при мощности 0 (0, 0.5, 2 В)	02
ПВХ: 60,0с	Полное время хода задвижки, в секундах	0600
MBX: 1,0c	Минимальное время хода задвижки, в секундах	060
КЗР Охлажд:		
Тип упр: Дискр	Тип управляющего сигнала на клапан	Аналог, Дискр
Мин напр: 0,0В	Напряжение при мощности 0 (0, 0.5, 2 В)	02
ПВХ: 60,0с	Полное время хода задвижки, в секундах	0600
MBX: 1,0c	Минимальное время хода задвижки, в секундах	060
Калорифер Ст1:		
Тип упр: ШИМ	Тип управления первой ступенью калорифера	ШИМ, Аналог
Период ШИМ:10с	Период ШИМ, в секундах	060

5.2 Управление воздушным клапаном притока

В зимний период, перед открытием воздушного клапана его следует прогреть. Тип обогрева задается в настройках прибора (Меню/Настройки/Возд. Клапан/Обогрев) Перим. или ТЭН.

Обогрев может быть периметральным или с помощью ТЭН. При периметральном обогреве выход будет замкнут постоянно.

Если выбран тип **ТЭН**, то обогрев производится каждый раз перед открытием и длится заданное время $t_{прог}$ вкп (Вр.обогрева), по истечении которого клапан считается прогретым. Если выбран тип **Перим**, то обогрев включен постоянно при сезоне Зима.

В случае периметрального обогрева только при запуске в зимнее время включается задержка t_{npor} вкл.

ПРИМЕЧАНИЕ

Если период **Лето**, то обогрев не производится.

В случае необходимости, можно включить контроль положения воздушного клапана (**Концевик : Нет** \rightarrow **Да**). Во время открытия и закрытия клапана, он срабатывает не позже заданного времени $\mathbf{t}_{\text{ОТКР}}$ **ВКп** (параметр **Вр.открытия**).

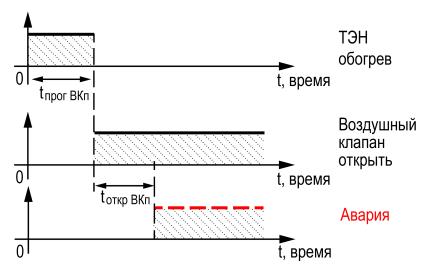


Рисунок 5.2 – Работа воздушного клапана притока

Таблица 5.2 - Меню/ Настройки/ Возд.Клапан

Экран	Описание	Диапазон
Воздушный клапан		
Обогрев: ТЭН	Выбор типа обогрева воздушного клапана	ТЭН, Перим
Концевик: Нет	Наличие концевого выключателя	Нет, Есть
Вр.обогрева: 10с	Время прогрева клапана при помощи ТЭН	0900
Вр.открытия: 5с	Время открытия клапана	0900

5.3 Управление вентилятором притока

Вентилятор запускается после открытия воздушного клапана, с учетом задержки на $t_{прог}$ вкп (Меню/Настройки/Вентилятор/Задержки/Включение). Для контроля работоспособности вентилятора, сигнал от датчика перепада давления должен появиться не позже заданного времени PDS Вкл.

После остановки вентилятора за время, заданное параметром **PDS Выкл** в контроллер должен поступить сигнал об окончании работы.

Для контроля средней продолжительности работы устройства между отказами предусмотрен параметр **Наработка**, который измеряется в часах. Таймер наработки вентилятора можно сбросить (Меню/Настройки/Вентилятор/Сброс нараб).

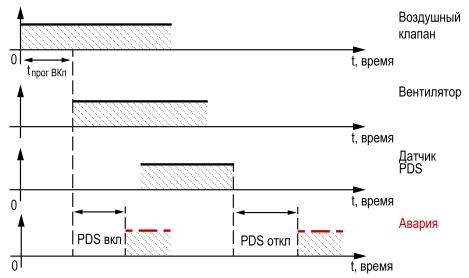


Рисунок 5.3 – Управление вентилятором притока

Таблица 5.3 - Меню/ Настройки/ Вентилятор

Экран	Описание	Диапазон	
Вентилятор			
Задержки			
Включения 5с	Время задержки запуска вентилятора после подачи команды на открытие ВКп, в секундах	0900	
PDS Вкл 5c	Допустимое время отсутствия сигнала от датчика перепада давления после запуска вентилятора, в секундах	0600	
PDS Откл 5с Допустимое время наличия сигнала от датчика перепада давления после остановки вентилятора, в секундах		0600	
Наработка: 0ч	Время наработки приточного вентилятора, в часах	065535	
Сброс нараб:Нет	Сброс таймера наработки вентилятора	Да, Нет	

5.4 Датчик давления на фильтре

Засорение фильтра приводит к возникновению перепада давления на нем. Для исключения ложных срабатываний действует временная нередактируемая задержка равная 5 секундам.

5.5 Управление водяным нагревателем

Для регулирования температуры приточного воздуха предусмотрено плавное управление приводом клапана водяного калорифера.

5.5.1 Контроль обратного теплоносителя

Для задания графика коррекции по температуре обратной воды следует использовать меню **Меню/ Настройки/ График Тобр**. График может содержать от 2 до 4 точек. Прибор регулирует температуру теплоносителя, контролируя нахождение температуры обратной воды в пределах, заданных параметрами **ВРГ**, **НРГ** относительно данного графика.

$$BP\Gamma = T_{ofp} + \Delta_{ofp}$$

$$HP\Gamma = T_{ofp} - \Delta_{ofp}$$

 $T_{\text{обр}}$. вычисляется по график у Меню/Настройки/График Тобр.

Фобр задается в параметрах **Меню/Настройки/Калорифер НВ/Обр. вода/ Делт. граф/Туст.обр**

В приборе так же предусмотрена защита от замораживания калорифера, отслеживанием аварийной температуры обратной воды. Для задания аварийного графика коррекции температуры обратной воды следует использовать меню Меню/ Настройки/ График Тобр/ График Тобр Мин. При достижении НАГ (Нижней аварийной границы) прибор переходит в аварийный режим Замерз В.

$$HA\Gamma = T_{OfpAB}$$

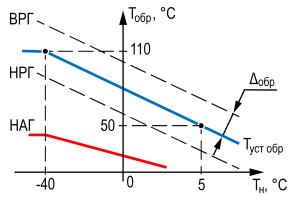


Рисунок 5.4 – График Тобр(Тн)

Таблица 5.4 - Меню/Настройки/График Тобр

Экран	Описание	Диапазон
График Тобр		
Кол.тчк: 2	Количество точек	24
Тнар Тобр		
1) -40,0 110,0	Температура наружного воздуха, точка № 1	- 6060
	Температура обратной воды, точка № 1	0150
2) 5,0 50,0	Температура наружного воздуха, точка № 2	- 6060
	Температура обратной воды, точка № 2	0150
3) 5,0 50,0	Температура наружного воздуха, точка № 3	- 6060
	Температура обратной воды, точка № 3	0150
4) 5,0 50,0	Температура наружного воздуха, точка № 4	- 6060
	Температура обратной воды, точка № 4	0150

Таблица 5.5 - Меню/Настройки/График Тобр Мин

Экран	Описание	Диапазон
График Тобр Мин		
Кол.тчк: 3	Количество точек	24
Тнар ТобрАв		
1) – 40,0 30,0	Аварийная температура наружного воздуха, точка № 1	- 6060
	Аварийная температура обратной воды, точка № 1	0150
2) 5,0 15,0	Аварийная температура наружного воздуха, точка № 2	- 6060
	Аварийная температура обратной воды, точка № 2	0150
3) 5,0 15,0	Аварийная температура наружного воздуха, точка № 3	- 6060
	Аварийная температура обратной воды, точка № 3	0150
4) 5,0 15,0	Аварийная температура наружного воздуха, точка № 4	- 6060
	Аварийная температура обратной воды, точка № 4	0150

5.5.2 Режимы работы узла

Предусмотрено плавное управление приводом клапана водяного калорифера для регулирования температуры приточного воздуха.

Прогрев ТО (прогрев теплообменника):

Во время прогрева калорифера происходит разогрев до температуры **ВРГ** обратного теплоносителя, рассчитанной по графику. Для этого прибор выдает сигнал на 100 % КЗР. Это обеспечит максимальную циркуляцию теплоносителя через калорифер, прогревая его до расчетной температуры **ВРГ**. Далее действует задержка прогрева **t**прогр (Настройки/Калорифер НВ/Время прогрева /Деж.реж или Раб.режим).

Если температура воды не достигла уставки **ВРГ** за максимальное время прогрева (**Меню/Настройки/Калорифер НВ/Защиты: Время прогрева: Максимум)**, то произойдет переход в аварийный режим «Прогрев» — закроются заслонки и остановится вентилятор, клапан будет работать на 100 %.

$BP\Gamma = Tofp + \Delta ofp$

 $T_{\text{обр}}$ вычисляется по графику Меню/Настройки/График Тобр.

Добр задается в параметрах **Меню/Настройки/Калорифер НВ/Обр. вода/ Делт. граф/Туст.обр**.

«Падающая» уставка:

После окончания прогрева, калорифер разогревается до температуры превышающей T_{yct} прит. Чтобы исключить повторный прогрев калорифера или «провал» по температуре T_{nput} активируется режим «Падающая уставка». «Падающая» уставка» характеризуется: начальной температурой T_{nag} (Меню/Настройка/Калорифер НВ/Плавный выход/Темп. Тпр) и временем действия t'_{np} (Настройка/Калорифер НВ/Плавный выход/Время). На время действия «падающей» уставки, действительная T_{yct} прит. будет заменена на T_{nag} , которая линейно изменяется от температуры T_{nput} до T_{yct} прит. в течение задаваемого времени t'_{np} (Время).

Работа:

После прогрева калорифера, прибор начинает регулировать температуру приточного воздуха по уставке $T_{yст}$ прит. Одновременно контролируя обратную воду согласно заданному графику $T_{oбp}$ (Настройки/ График Тобр).

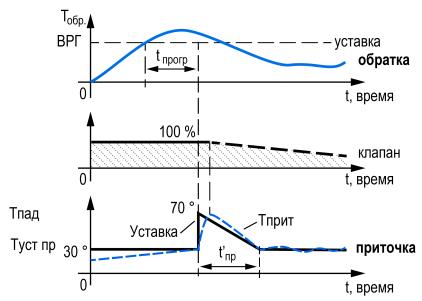


Рисунок 5.5 – Работа водяного нагревателя

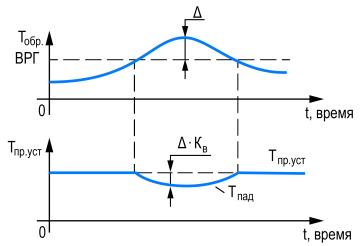


Рисунок 5.6 - Работа водяного нагревателя 2

Тобр. > **ВРГ**, то для возвращения температуры обратной воды в допустимый диапазон, контроллер вычисляет новую уставку приточного воздуха. При данном режиме на главном экране прибора появится скорректированная уставка.

УстК.:

Уставка приточного воздуха рассчитывается по формуле:

$$T_{\text{пад}} = T_{\text{пр.уст}} + \Delta \cdot K$$

где Δ (Настройки/Калорифер НВ/Обр. Вода/Делт. Граф) — разница между текущей температурой обратного теплоносителя и $T_{\text{обр мах}}$, $K_{\text{В}}$ (Настройки/Калорифер НВ/Обр. Вода/Влияние) — коэффициент влияния перегрева обратной воды на уставку температуры приточного воздуха.

Выходная мощность нагревателя вычисляется по ПИ-закону, регулируемая величина – температура приточного воздуха $T_{прит}$. Подробнее о настройке ПИ-регулятора см. <u>Приложение A</u>.

В случае ПИ-регулирования зависимость выходной мощности от управляющего воздействия можно записать в виде:

$$Y_i = K_{\Pi} \cdot \left(E_i + rac{\Delta t_{ ext{ iny M3M}}}{T_{ ext{ iny M}}} \sum_{j=0}^i E_i
ight)$$

где Y_i — выходная мощность нагревателя;

 K_Π — пропорциональный коэффициент (Настройки/Калорифер НВ/ПИ-регулятор/Кп);

 $T_{\text{и}}$ — время интегрирования (Настройки/Калорифер НВ/ПИ-регулятор/Ти);

 E_i — разность между уставкой и текущим значением T_{nput} ;

 $\Delta t_{\text{изм}}$ — время дискретизации (1 с).

Таблица 5.6 - Меню/ Настройки/ Калорифер НВ

Экран	Описание	Диапазон
Калорифер НВ		
Регулирование:		
Время прогрева:		
Деж.реж: 10с	Время прогрева калорифера в дежурном режиме, в секундах	06000
Раб.реж: 10с	Время прогрева калорифера перед стартом, в секундах	06000
ПИ—регулятор:		
Кп: 5,000	Пропорциональный коэффициент	09999
Ти: 60,00	Время интегрирования	09999
Плавный выход:		
Время: 20с	: 20c Время падения уставки температуры приточного воздуха, в секундах	
Темп.Тпр: 70,0	Уставка падения температуры приточного воздуха	0200
Защиты:		
Время прогрева:		
Максимум: 20м	мум: 20м Максимальное допустимое время прогрева калорифера, в минутах	
После Ав: 10с	Время прогрева калорифера после аварии, в секундах	06000
Врм 3х Ав: 120м	Время мониторинга трех перезапусков, в минутах	06000
Обр.вода:		
Темп.мин: 15,0	Аварийная температура обратной воды	0100
Делт.граф:5,0	Допустимое отклонение температуры обратной воды	020
Влияние: 3,0	Коэффициент влияния перегрева обратной воды на уставку температуры приточного воздуха	09

5.6 Управление электрическим нагревателем

Алгоритмом предусмотрено управление до трех ступеней нагревателя (Кол-во ступеней).

Выходная мощность электрического нагревателя вычисляется по ПИ-закону, регулируемая величина – температура приточного воздуха $\mathbf{T}_{\mathsf{прит}}$. Подробнее о настройке ПИ-регулятора см. <u>Приложение A</u>.

Чтобы исключить случаи частого срабатывания ИМ, в приборе предусмотрена **зона нечувствительности** температуры приточного воздуха. Данный параметр нередактируемый и равен 1 °C.

В случае ПИ-регулирования зависимость выходной мощности от управляющего воздействия можно записать в виде:

$$Y_i = K_{\Pi} \cdot \left(E_i + rac{\Delta t_{ ext{ iny H3M}}}{T_{ ext{ iny H}}} \sum_{j=0}^i E_i
ight)$$

где Үі – выходная мощность нагревателя;

К_П – пропорциональный коэффициент (**Кп**);

 T_{u} – время интегрирования (**Ти**);

Е_і – разность между уставкой и текущем значением Т_{прит};

Δt_{изм} – время дискретизации (1 c).

Первая ступень управляется плавно. Вторая и третья ступени являются опорными и управляются дискретными сигналами.

Для защиты от частого включения опорных ступеней используется гистерезис, равный 10 % мощности. Т. е. вторая ступень включится, когда выходная мощность достигнет 105 %, выключится, когда, снизится до 95 % (205 % и 195 % для третьей ступени, соответственно).

Для предотвращения перегрева, ТЭН продувается в течение заданного времени (**Продув**) во время перехода в **Дежурный** режим.

Если **Т**_{прит} поднимается выше максимально допустимого значения (**Темп. Авар**) или срабатывает защитный термостат (вход DI 2), то прибор переходит в **Аварийный** режим и включается продувка. Подробнее об авариях см. <u>раздел 5.11</u>.

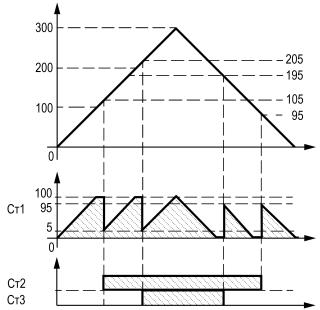


Рисунок 5.7 – Управление электрическим нагревателем

Таблица 5.7 - Меню/ Настройки/ Калорифер НЭ

Экран	Описание	Диапазон
Калорифер НЭ		
Кол-во ступ: 3	Количество ступеней нагревателя	13
ПИ-регулятор:		
Кп: 5,000	Пропорциональный коэффициент	09999
Ти: 60,00	Время интегрирования	09999
Продув: 30с	Время продува ТЭН после их выключения, в секундах	06000
Темп.Авар: 115,0	Максимально допустимая температура приточного воздуха	0200

5.7 Управление водяным охладителем

Регулятор температуры приточного воздуха формирует управляющий сигнал для электропривода клапана в контуре водяного калорифера охлаждения.

ВНИМАНИЕ

Если используется установка с дискретным управлением водяного калорифера нагрева и охлаждения, то следует учитывать, что одни и те же выходные элементы используются на нагрев и для охлаждения (см. раздел 11.4).

При изменении потребности в охлаждении с помощью клапана, изменяется температура воды в контуре калорифера, что вызывает изменение теплоотдачи теплообменника.

Выходная мощность нагревателя вычисляется по ПИ-закону, регулирование температуры происходит приточном датчику температуры ($T_{прит}$).

Если $T_{прит} > T_{уст.прит} + \Delta_{прит}$ клапан открывается.

Если $T_{nput} < T_{yct.nput} - \Delta_{nput}$ клапан закрывается. $T_{yct.nput}$ задается в Меню/Быстр.настройка Уставки/Прит.

∆прит – нередактируемый параметр равный 0,5 °C.

Подробнее о настройке ПИ-регулятора см. Приложение А.

Чтобы исключить случаи частого срабатывания ИМ, в приборе предусмотрена **зона нечувствительности** температуры приточного воздуха. Данный параметр нередактируемый и равен 1 °C.

В случае ПИ-регулирования зависимость выходной мощности от управляющего воздействия можно записать в виде:

$$Y_i = K_\Pi \cdot \left(E_i + rac{\Delta t_{ exttt{ iny IM}}}{T_{ exttt{ iny I}}} \sum_{j=0}^i E_i
ight)$$

где Y_i — выходная мощность нагревателя;

 K_Π — пропорциональный коэффициент (**Меню/Настройки/Калорифер НО/ПИ-**регулятор/**КП**);

Т_и — время интегрирования (**Меню/Настройки/Калорифер НО/ПИ-регулятор/ Ки**):

 E_{i} — разность между уставкой и текущем значением $T_{прит}$;

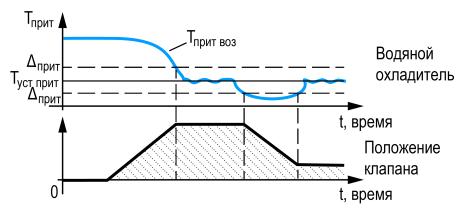


Рисунок 5.8 – Управление водяным нагревателем

Таблица 5.8 - Меню/Настройки/Калорифер НВ+ОВ

Экран		Описание	Диапазон
Калорифер НВ+ОВ			
ПИ-рег.охлажд:			
Кп: 5,000		Пропорциональный коэффициент	09999
Ти:	60,000	Время интегрирования	09999

 $\Delta t_{\text{изм}}$ — время дискретизации (1 с).

5.8 Управление ККБ

Регулятор температуры приточного воздуха формирует управляющий сигнал для ККБ или охладительной установки с фреоном.

Для исключения возможности переохлаждения помещения, для установки с ККБ, датчик температуры в помещении является обязательным, так как регулировка происходит по его показаниям.

Если $T_{nom} > T_{yct nom} + \Delta_{nom}$, то включается ККБ, если $T_{nom} < T_{yct nom} - \Delta_{nom}$, то ККБ выключается.

В случае аварии ККБ в зимний период, она игнорируется (нет индикации). При переходе с режима **Лето** (авария ККБ) \rightarrow **Зима** (авария ККБ) и обратно, авария учитывается (есть индикация).

5.9 Использование недельных таймеров и таймера День/Ночь

В приборе предусмотрено три недельных таймера:

• День/Ночь

Позволяет задать ночной период времени, в который происходит смена уставки температуры приточного воздуха, а функция поддержания температуры в помещении отключается. Данный таймер работает ежедневно. На главном экране прибора, появляется скорректированная уставка УстК, где буква К означает скорректированное значение;

Смена 1 и Смена 2

Позволяют задать часы работы вентсистемы с учетом дня недели. Управление вентсистемой происходит в заданные в настройках часы только если запущен алгоритм.

По умолчанию все таймеры выключены.

Включаются таймеры в настройках прибора (**Меню/Настройка/Недельные** таймеры). Потом задается время действия таймера (**Меню/Настройка/Недельные** таймеры/**Вкл или Выкл**).

Любой таймер работает только в выбранные дни недели (**Меню/Настройка/ Недельные таймеры/Дни нед**).

Если Смена 1 и Смена 2 работают в одни и те же дни недели, результирующее значение высчитывается по логическому ИЛИ.

Поведение таймера в зависимости от настроек показано на рисунке 5.10.

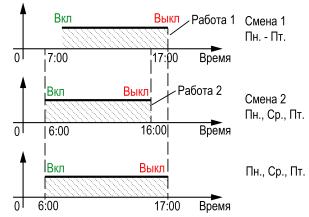


Рисунок 5.10 – Использование таймеров

Таблица 5.9 - Меню/ Настройки/ Недельные таймеры

Экран	Описание	Диапазон	
Недел-е таймеры:			
Смена 1: Неисп	Вкл/выкл недельный таймер Смена 1	Не исп, Исп-ся	
Вкл в: 7:0	Время включения вентустановки	00:00 23:59	
Выкл в: 17:0	Время выключение вентустановки	00:00 23:59	
Дни нед: Пн—Пт	Дни недели в которые будет происходить включение	Все, Пн—Пт, Сб —Вс, ПнСрПт, ВтЧтСб	
Смена 2: Неисп	Вкл/выкл недельный таймер Смена 2	Не исп, Исп-ся	
Вкл в: 9:0	Время включения вентустановки	00:00 23:59	
Выкл в: 16:0	Время выключение вентустановки	00:00 23:59	
Дни нед: Сб—Вс	Дни недели, в которые будет происходить включение	Все, Пн—Пт, Сб —Вс, ПнСрПт, ВтЧтСб	
День/Ночь:Неисп	Вкл/выкл функцию изменения уставки температуры приточного воздуха в ночное время суток	Не исп, Исп-ся	
День с: 8:0	Время наступления «дня»	00:00 23:59	
Ночь с: 16:0	Время наступления «ночи»	00:00 23:59	

5.10 Условия коррекции уставки температуры приточного воздуха (каскадное регулирование)

Регулирование температуры в помещении возможно, если установлен и сконфигурирован датчик температуры в помещении (**Меню/Настройки/Входа и выхода/Тпом Исп. в упр-Да**).

Для поддержания требуемой температуры воздуха в контролируемом помещении используется каскадное регулирование — ПИ-регулятор вычисляет уставку с поправочным коэффициентом.

Уставка приточного воздуха рассчитывается по формуле с рисунка 5.11, где Δ — разница между текущей температурой в помещении и $T_{\text{пом}}$ в помещении и уставкой температуры в помещении $T_{\text{уст пом}}$ (Меню/Быстрая настройка/ Помещение).

Контроллер формирует уставку $T'_{yct\ nput}$ с учетом датчика в помещении. На главном экране прибора, появляется скорректированная уставка УстК, где буква К означает скорректированное значение.

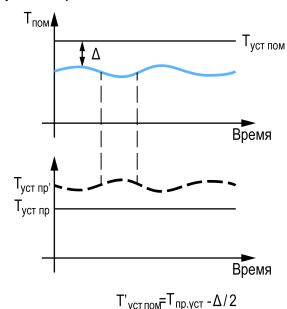


Рисунок 5.11 – Каскадное регулирование

5.11 Список аварий

Для уточнения причины перехода, в режиме **«Авария»** в приборе предусмотрен экран состояния аварий, на котором отображаются все возможные причины неисправности.

Для быстрого перехода с Главного экрана на экран состояния аварий предусмотрена комбинация кнопок $\overline{\text{ALT}}_+$ $\overline{\text{SEL}}_-$

Таблица 5.10 - Аварии

Тип аварии	Состояние	Условие	Реакция	Сигнализация	Отображение в Архивном журнале	Сброс
			Общие аварии	1		
Пожар	Норма, Авария	Сработал дискретный датчик пожара	Переход в аварийный режим, выключение всех исполнительных механизмов.	Светодиод «Авария» светится, лампа «Авария» светится.	Пожар	Ручной сброс в меню Аварии после устранения причины или по сети RS-485
ВКп	Норма, Авария	После подачи команды на открытие/закрытие воздушного клапана не появился/не пропал сигнал от концевого выключателя клапана	Переход в аварийный режим, с поддержанием всех функций доступных в Дежурном режиме		Вент.Пр	
Вп	Норма, Авария	После подачи команды на запуск/остановку вентилятора не изменился сигнал от датчика перепада давления или пропал во время работы	Переход в аварийный режим, с поддержанием всех функций доступных в Дежурном режиме		В.Клапан Пр	
Фильтр	Норма, Авария	Сработал датчик перепада давления на фильтре	_		Фильтр	
Дат.Тприт		Значение сигнала от датчика		Светодиод «Авария»	Дат.Тприт	Автоматически по
Дат.Тнар	_	допустимого для выбранного типа диапазона или обрыв датчика всех функций доступных в Дежурном режиме Авария возможна только, М	всех функций доступных в	светится, лампа «Авария» светится.	Дат.Тнар	устранению причины с задержкой 3 с
Дат.Товр				Мигание светодиода	Дат.Товр	=
Дат.Тпом			управлении. Прекращают работать те функции, которые используют в своей работе комнатный датчик (фреоновый охладитель ККБ, каскадное	«Авария»	Дат.Тпом	

Продолжение таблицы 5.10

Тип аварии	Состояние	Условие	Реакция	Сигнализация	Отображение в Архивном журнале	Сброс
		A	варии, относящиеся к водянс	ому калориферу		
Насос ТО	Норма, Авария	Сработал автомат защиты насоса	Переход в аварийный режим, выключение всех исполнительных механизмов, кроме клапана, который по умолчанию открыт на 10 %, для исключения возможности обмораживания водяного калорифера	Светодиод «Авария» светится, лампа «Авария» светится.	Ав.Насос	Ручной сброс в меню Аварии после устранения причины или по сети RS-485
ЗамерзВ	Норма, Авария	Температура обратной воды ниже НАГ (Сезон Зима)	Переход в аварийный режим. Заслонки	Светодиод «Авария» светится, лампа «Авария» светится.	Риск Зам.Вода	Автоматически по устранению причины и прогреву обратной воды до ВРГ
Замерз Т	Норма, Авария	Сработал капиллярный термостат защиты калорифера от замерзания (Сезон Зима)	закрываются и вентилятор останавливается, клапан работает на 100 %, насос работает.		Риск Зам.Терм	
Прогрев	Норма, Авария	Не удалось прогреть калорифер за допустимое время	Переход в аварийный режим. Заслонка закрывается и вентилятор	Светодиод «Авария» светится, лампа «Авария» светится.	Не прогрет	Ручной сброс в меню Аварии или по сети RS-485
3 перезап	Норма, 1 раз, 2 раза, Авария	Произошло 3 аварии по угрозе замерзания калорифера (Замерз В, Замерз Т) за заданный промежуток времени	останавливается, клапан открыт на 100 %, насос работает.		_	
		Авар	ии, относящиеся к электриче	скому калориферу	1	1
Перегрев	Норма, Авария	Сработал термостат или температура приточного воздуха превысила допустимое значение (Сезон Зима)	Переход в аварийный режим, одновременно включается Продув.	Светодиод «Авария» светится, лампа «Авария» светится.	Перегрев	Ручной сброс в меню Аварии после устранения причины или по сети RS–485
		Авар	ии, относящиеся к фреоново	му охладителю ККБ		
KKE	Норма, Авария	Сработал автомат защиты ККБ. (Сезон Лето)	Переход в аварийный режим.	Светодиод «Авария» светится, лампа «Авария» светится.	AB.KK5	Автоматически по устранению причины с задержкой 3 с

5.12 Журнал аварий

Аварийные события фиксируются в журнал.

В него заносятся следующие параметры:

- краткое название аварии;
- время, когда она случилась;
- время, когда произошел сброс аварии.

Журнал рассчитан на 24 записи.

Последнее событие находится в начале журнала под номером 1.

При заполнении журнала наиболее старые записи удаляются.

Для пролистывания журнала на экране следует указать номер записи.

5.13 Сброс настроек

ВНИМАНИЕ

Данная команда не распространяется на значения паролей, параметры даты и времени и сетевые настройки прибора.

Сброс параметров на заводские значения осуществляется подачей команды в меню Сброса настроек.

Таблица 5.11 - Меню/Аварии/Архивный журнал

Экран	Описание	Диапазон
Аварии: Журнал		
1> Вкл	Номер записи в журнале событий для отображения	124
	Краткое название аварии	
Дата фиксации:		
ДДМММГГ чч:мм:сс	Дата и время возникновения аварии	
Дата квитир—ния:		
ДДМММГГ чч:мм:сс	Дата и время пропадания аварии	
Сброс журнала	Сброс журнала аварий	Сброс журнал Сбросить

Таблица 5.12 - Меню/Настройки/Сброс настроек

Экран	Описание	Диапазон
Сброс настроек		
на заводские:Нет	Сброс настроек на заводские значения	Нет, Да

6 Сетевой интерфейс

6.1 Сетевой интерфейс

|ПРЕДУПРЕЖДЕНИЕ

Для корректной работы прибора вносить изменения в параметры «Прибор», «Входы», «Выходы» ЗАПРЕЩЕНО!

В контроллере установлен модуль интерфейса RS-485 для организации работы по протоколу Modbus в режиме Slave.

Для работы контроллера в сети RS-485 следует установить его сетевые настройки в системном меню контроллера с помощью кнопок и индикатора на лицевой панели (см. *рисунок 6.1*).

Прибор в режиме Slave поддерживает следующие функции:

- чтение состояния входов/выходов;
- запись состояния выходов;
- чтение/запись сетевых переменных.

Прибор работает по протоколу Modbus в одном из двух режимов: Modbus-RTU или Modbus-ASCII, автоматически распознает режим обмена RTU/ASCII. Адреса регистров, тип переменных параметров, доступных по протоколу Modbus, приведены в разделе 6.2.

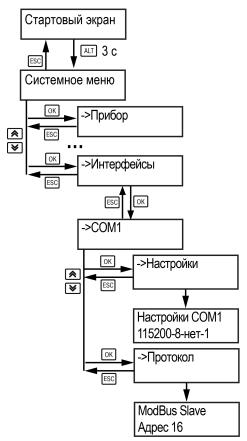


Рисунок 6.1 – Настройка параметров сетевого интерфейса

6.2 Карта регистров

Рег.	Тип	Чт./ Зап.	Описание
512	word	R	Битовая маска дискретных входов
512.0	bool	R	Датчик пожара (Н3)
512.1	bool	R	Защита калорифера от обмерзания (НЗ)
512.2	bool	R	Защита калорифера по перегреву (Н3)
512.3	bool	R	Датчик перепада давления на приточном фильтре (НО)
512.4	bool	R	Автомат защиты насоса (Н3)
512.5	bool	R	Концевой выключатель приточного воздушного клапана (НО)
512.6	bool	R	Датчик перепада давления на приточном вентиляторе (НО)
512.7	bool	R	ККБ неисправен (Н3)
514	word	R	Битовая маска дискретных выходов
514.0	bool	R	Приточный воздушный клапан открыт
514.1	bool	R	Включить обогрев приточного воздушного клапана
514.2	bool	R	Включить приточный вентилятор
514.6	bool	R	Клапан теплообменника больше
514.7	bool	R	Клапан теплообменника меньше
514.10	bool	R	Включить вторую ступень электрического калорифера
514.11	bool	R	Включить третью ступень электрического калорифера
514.12	bool	R	Включить циркуляционный насос
514.13	bool	R	Вытяжной воздушный клапан открыт
514.14	bool	R	Включить ККБ
514.15	bool	R	Включить сигнал аварии
516	real	R	Температура наружного воздуха (°C)
518	real	R	Температура приточного воздуха (°C)
520	real	R	Температура обратной воды (°C)
522	real	R	Температура воздуха в помещении (°C)
524	real	R	Влажность (%)
526	real	R	Текущая мощность первой ступени калорифера
526	real	R	Процент открытия клапана на обратном теплоносителе
528	real	R	Процент открытия клапана на охладителе
530	real	R	Положение клапана рециркуляции
532	word	W	Командное слово

Рег.	Тип	Чт./ Зап.	Описание
532.0	bool	W	Перейти в режим Старт
532.1	bool	W	Задать вручную сезон Зима
532.2	bool	W	Сбросить все аварии
532.3	bool	W	Способ определения сезона: по температуре наружного воздуха
533	word	W	Командное слово 2
533.0	bool	W	Перейти в режим Стоп
533.1	bool	W	Задать в ручную сезон Лето
533.2	bool	W	
533.3	bool	W	Способ определения сезона — вручную
534	word	R	Код состояния системы
535	word	R	Код состояния системы 2
535.0	bool	R	Кнопка переключения режимов Старт/Стоп/Текущее положение селектора режимов Старт/Стоп
535.1	bool	R	Кнопка переключения сезона/отображение текущего сезона
535.2	bool	R	Способ определения сезона
535.3	bool	R	Включить/выключить функцию поддержания температуры в помещении
535.4	bool	R	Время суток — ночь
536	word	R	Код состояния приточного вентилятора
544	word	R	Слово состояний — Аварии
544.0	bool	R	Сработал дискретный датчик пожара
544.1	bool	R	После подачи команды на открытие / закрытие воздушного клапана не появился / не пропал сигнал от концевого выключателя
544.3	bool	R	После подачи команды на запуск / остановку вентилятора не появился / не пропал сигнал от датчика перепада давления. Пропал сигнал от датчика во время работы.
544.6	bool	R	Сработал термостат или температура приточного воздуха превысила допустимое значение
544.7	bool	R	Температура обратной воды ниже аварийного значения
544.8	bool	R	Сработал термостат защиты калорифера от замерзания
544.9	bool	R	Не удалось прогреть калорифер за допустимое время
544.10	bool	R	Случилось три аварии по угрозе замерзания калорифера за заданный промежуток времени
544.11	bool	R	Поступил сигнал ККБ неисправен
544.12	bool	R	Сработал автомат защиты насоса

Рег.	Тип	Чт./ Зап.	Описание
544.13	bool	R	Во время работы вентилятора сработал датчик перепада давления на фильтре на время больше заданного
545			Слово состояний — Аварии 2
545.0	bool	R	Значение сигнала от датчика температуры приточного воздуха находится вне допустимого для выбранного типа диапазона
545.1	bool	R	Значение сигнала от датчика температуры наружного воздуха находится вне допустимого для выбранного типа диапазона
545.2	bool	R	Значение сигнала от датчика температуры обратного теплоносителя находится вне допустимого для выбранного типа диапазона
545.3	bool	R	Значение сигнала от датчика температуры воздуха в помещении находится вне допустимого для выбранного типа диапазона
546	real	RW	Уставка температуры приточного воздуха
548	real	RW	Уставка температуры приточного воздуха в ночной период времени
550	real	RW	Уставка температуры воздуха в помещении
552	real	R	Уставка температуры обратной воды
554	real	RW	Температура наружного воздуха, соответствующая смене сезона с Лето на Зима
556	real	RW	Пропорциональный коэффициент 1
558	real	RW	Постоянная времени интегрирования 1
560	real	RW	Пропорциональный коэффициент 2
562	real	RW	Постоянная времени интегрирования 2
564	word	RW	Время прогрева клапана с помощью ТЭН (с)
565	word	RW	Время задержки запуска вентилятора после подачи команды на открытие ВКп (с)
566	word	RW	Время продува ТЭН после их выключения (с)
567	word	RW	Время прогрева калорифера перед стартом (с)
568	word	RW	Время прогрева калорифера в дежурном режиме (с)
569	word	RW	Время падения уставки температуры приточного воздуха (с)
570	real	RW	Уставка падения температуры приточного воздуха (°C)

7 Меры безопасности

По способу защиты обслуживающего персонала от поражения электрическим током, согласно ГОСТ IEC 61131–2–2012, прибор должен относиться к классу II.

При эксплуатации, техническом обслуживании и поверке следует соблюдать требования ГОСТ 12.3.019— 80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

При эксплуатации прибора открытые контакты клеммника находятся под напряжением, опасным для жизни человека. Установку прибора следует производить в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам.

Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора. Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

ПРЕДУПРЕЖДЕНИЕ

ЗАПРЕЩАЕТСЯ использование прибора при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

8 Монтаж

ОПАСНОСТЬ

Монтаж должен производить только обученный специалист с допуском на проведение электромонтажных работ. Во время монтажа следует использовать индивидуальные защитные средства и специальный электромонтажный инструмент с изолирующими свойствами до 1000 В.

При размещении прибора следует учитывать меры безопасности, представленные в *разделе 7*.

Монтаж прибора производится в шкафу, конструкция которого должна обеспечивать защиту от попадания в него влаги, грязи и посторонних предметов.

ПРИМЕЧАНИЕ

Монтировать и подключать следует только предварительно сконфигурированный прибор.

ПРЕДУПРЕЖДЕНИЕ

Питание каких-либо устройств от сетевых контактов прибора запрещается.

Монтаж прибора на DIN-рейке осуществляется в следующей последовательности:

- 1. Подготовить на DIN-рейке место для установки прибора в соответствии с размерами прибора (см. *рисунок 8.2*).
- 2. Прибор установить на DIN-рейку.
- 3. Прибор с усилием прижать к DINрейке до фиксации защелки.
- 4. Смонтировать внешние устройства с помощью ответных клеммников, входящих в комплект прибора.

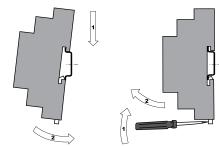


Рисунок 8.1 – Монтаж и демонтаж прибора

Демонтаж прибора осуществляется в следующей последовательности:

- 1. Отсоединить съемные части клемм от прибора (см. рисунок 9.1).
- 2. В проушину защелки вставить острие отвертки.
- 3. Защелку отжать, после чего прибор отвести от DIN-рейки.

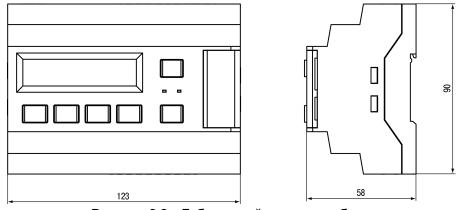


Рисунок 8.2 – Габаритный чертеж прибора

9 «Быстрая» замена

Конструкция клемм прибора позволяет осуществить оперативную замену прибора без демонтажа подключенных к нему внешних линий связи.

Последовательность замены прибора следующая:

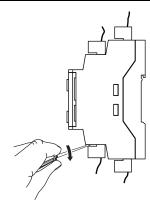


Рисунок 9.1 - Отсоединение съемных частей клемм

- 1. Обесточить все линии связи подходящие к прибору, в том числе линии питания;
- 2. Съемная часть каждой из клемм отделяется от прибора вместе с подключенными внешними линиями связи с помощью отвертки или другого подходящего инструмента;
- 3. Прибор снимается с DIN-рейки, а на его место устанавливается другой с предварительно удаленными разъемными частями клемм;
- 4. К установленному прибору подсоединяются разъемные части клемм с подключенными внешними линиями связи.

10 Первое включение

ОПАСНОСТЬ

После распаковки прибора следует убедиться, что при транспортировке прибор не был поврежден.

Если прибор находился длительное время при температуре ниже минус 20 °C, то перед включением и началом работ необходимо выдержать его в помещении с температурой, соответствующей рабочему диапазону в течение 30 мин.

Во время первого включения следует:

1. Подключить прибор к источнику питания.

ВНИМАНИЕ

Перед подачей питания на прибор следует проверить правильность подключения напряжения питания и его уровень.

Для приборов с питанием от постоянного напряжения:

- при напряжении ниже 19 В работа прибора не гарантируется (прибор прекращает функционировать, однако, из строя не выходит);
- при превышении напряжения питания до уровня 30 В возможен выход прибора из строя.
- 2. Подключить исполнительные механизмы.
- 3. Подать питание на прибор.
- 4. Проверить корректность работы подключенных устройств (см. <u>раздел 4.5</u>).
- 5. Снять питание.

11 Схема подключения

11.1 Монтаж электрических цепей

|ПРЕДУПРЕЖДЕНИЕ

Подключение производить при отключенном питании прибора и всех подключенных к нему устройств. Иначе возможно повреждение прибора или подключенных устройств.

Питать прибор следует осуществлять переменным или постоянным напряжением в зависимости от модификации прибора.

Подключать прибор к сети переменного тока следует от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети.

|ПРЕДУПРЕЖДЕНИЕ

Питание каких либо устройств от сетевых контактов прибора запрещается.

Для обеспечения надежности электрических соединений рекомендуется использовать кабели с медными многопроволочными жилами, сечением не более 0,75 мм², концы которых перед подключением следует зачистить и залудить. Зачистку жил кабелей следует выполнять с таким расчетом, чтобы срез изоляции плотно прилегал к клеммной колодке, т. е. чтобы оголенные участки провода не выступали за ее пределы.

11.2 Схема подключения Алгоритм 01

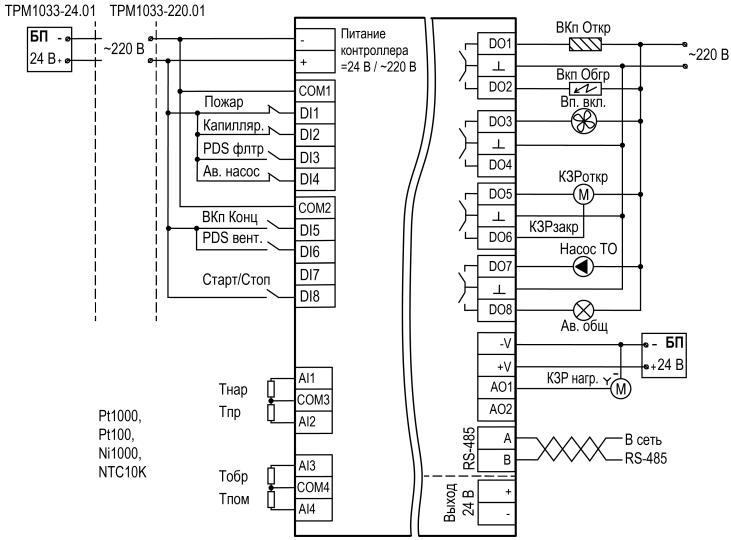


Рисунок 11.1 – Схема подключения Алгоритм 01 (Система с водяным калорифером нагрева)

11.3 Схема подключения Алгоритм 02

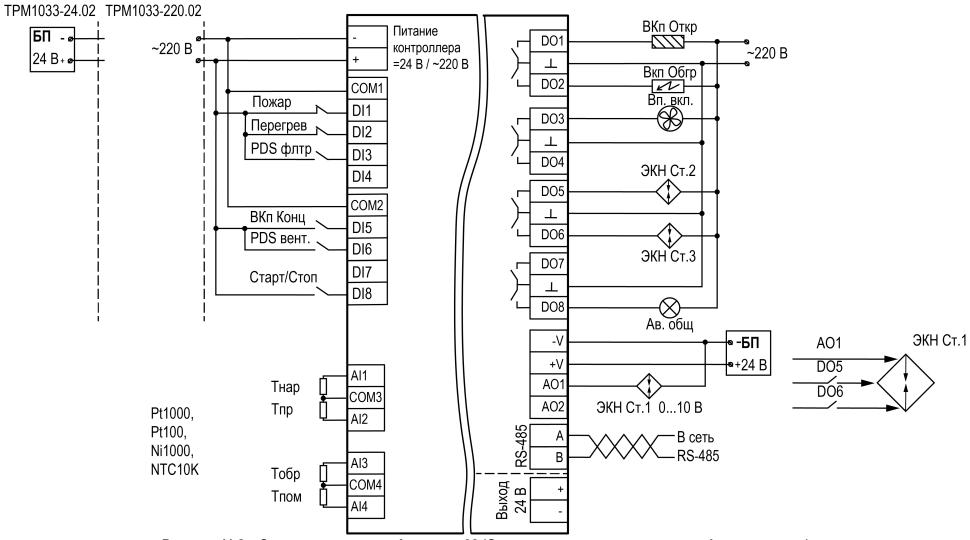


Рисунок 11.2 – Схема подключения Алгоритм 02 (Система с электрическим калорифером нагрева)

11.4 Схема подключения Алгоритм 03

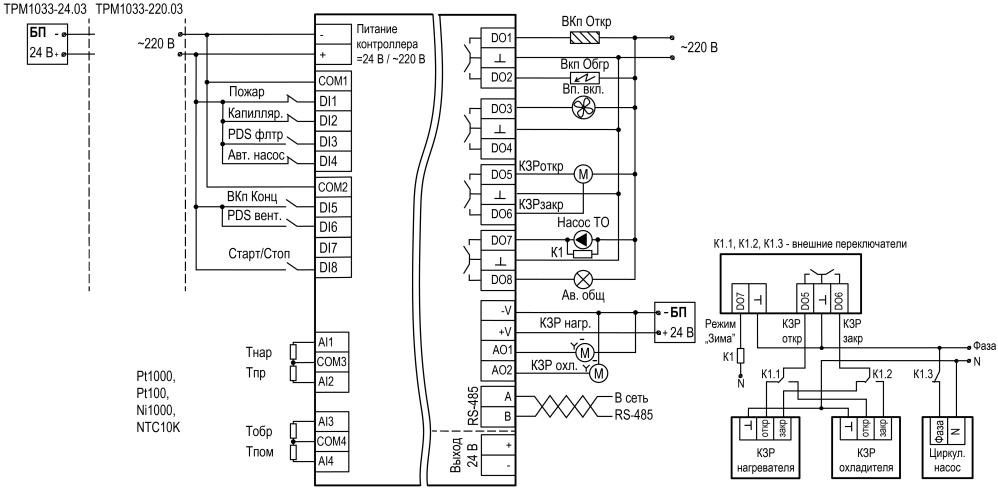


Рисунок 11.3 – Схема подключения Алгоритм 03 (Система с водяным калорифером нагрева и водяным охладителем)

11.5 Схема подключения Алгоритм 04

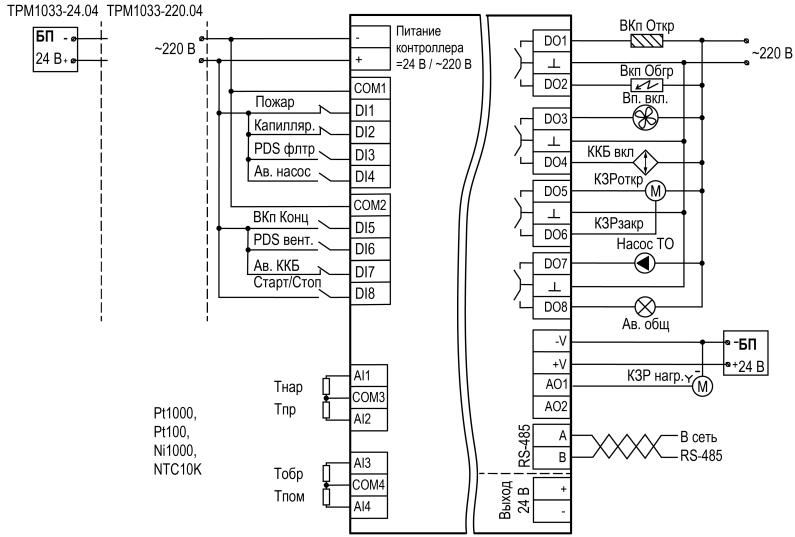


Рисунок 11.4 – Схема подключения Алгоритм 04 (Система с водяным калорифером нагрева и фреоновым охладителем)

11.6 Схема подключения Алгоритм 05

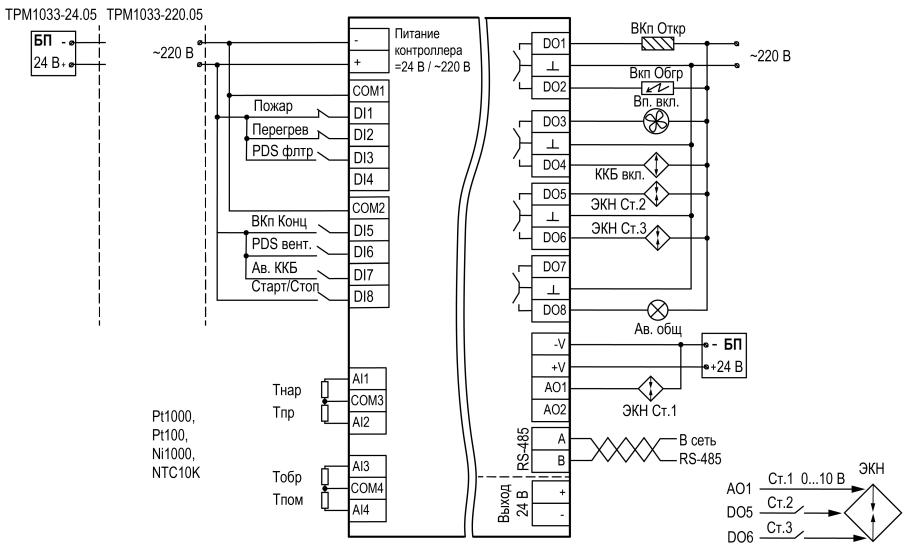


Рисунок 11.5 – Схема подключения Алгоритм 05 (Система с электрическим калорифером нагрева и фреоновым охладителем)

12 Технические характеристики

Таблица 12.1 - Характеристики прибора

Наименование	Значение		
	TPM1033-220.XX.XX	TPM1033-24.XX.XX	
Пит	ание		
Диапазон напряжения питания	~ 94264 В (номинальное 120/ 230 В, при 4763 Гц)	= 1930 B (номинальное 24 B)	
Гальваническая развязка	ec	ТЬ	
Электрическая прочность изоляции между входом питания и другими цепями	2830 B	1780 B	
Потребляемая мощность, не более	17 BA	10 Вт	
Встроенный источник питания	есть	_	
Выходное напряжение встроенного источника питания постоянного тока	24 ± 3 B	_	
Ток нагрузки встроенного источника питания, не более	100 мА	_	
Электрическая прочность изоляции между выходом питания и другими цепями	1780 B —		
Дискретн	ые входы		
Количество входов	8		
Напряжение «логической единицы»	159264 В (переменный ток)	1530 В (постоянный ток)	
Ток «логической единицы»	0,751,5 мА	5 мА (при 30 В)	
Напряжение «логического нуля»	040 B	— 3+ 5	
Подключаемые входные устройства	Датчики типа «сухой контакт», коммутационные устройства (контакты реле, кнопок и т. д.)		
Гальваническая развязка	Групповая, по 4 входа (1–4 и 5–8, «общий минус»)		
Электрическая прочность изоляции:			
между группами входов между другими цепями	1780 B 2830 B		
Аналого	вые входы		
Количество входов	4	4	
Тип измеряемых сигналов	PT100/PT1000 α = 0,00385 (-200+ 850 °C) Ni1000 α = 0,00617 (-60 + 180 °C) NTC10K R ₂₅ = 10 000 (B 25/100 = 3950 (-20 +125 °C))		

Продолжение таблицы 12.1

Наименование	Значение		
	TPM1033-220.XX.XX	TPM1033-24.XX.XX	
Предел основной приведенной погрешности	± 0,5 %		
Время опроса входов	10	MC	
Дискретні	ые выходы		
Количество выходных устройств, тип	8 э/м реле (нормал	льно-разомкнутые)	
Коммутируемое напряжение в нагрузке:			
для цепи постоянного тока, не более	30 В (резисти	вная нагрузка)	
для цепи переменного тока, не более	250 В (резисти	вная нагрузка)	
Допустимый ток нагрузки, не более	5 А при напряжении не более 250 В переменного тока и соѕ φ > 0,95; 3 А при напряжении не более 30 В постоянного тока		
Гальваническая развязка	Групповая по 2 реле (1–2; 3–4; 5–6; 7–8)		
Электрическая прочность изоляции: между другими цепями между группами выходов	2830 B 1780 B		
Аналогов	ые выходы		
Количество выходных устройств, тип	2 ЦАП «парамет	р—напряжение»	
Диапазон генерации тока	0	10 B	
Напряжение питания	1530 В, пит	ание внешнее	
Гальваническая развязка	есть (гру	упповая)	
Электрическая прочность изоляции	2830 B		
Индикация и элег	менты управления		
Тип дисплея	текстовый монохромный ЖКИ с подсветкой, 2 16 символов		
Индикаторы	два светодиодных индикатора (красный и зеленый)		
Кнопки	6 ι	ШТ.	
Кој	опус		
Тип корпуса	Для крепления на	DIN-рейку (35 мм)	
Габаритные размеры	123 × 90 × 58 мм		
Степень защиты корпуса по ГОСТ 14254–2015	IP20		

Продолжение таблицы 12.1

Наименование	Значение		
	TPM1033-220.XX.XX	TPM1033-24.XX.XX	
Масс прибора, не более (для всех вариантов исполнений)	0,6 кг		
Средний срок службы	8 лет		

13 Условия эксплуатации

Прибор предназначен для эксплуатации при следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов:
- температура окружающего воздуха от минус 20 до +55 °C;
- верхний предел относительной влажности воздуха: не более 80 % при +25 °C и более низких температурах без конденсации влаги;
- допустимая степень загрязнения 1 (несущественные загрязнения или наличие только сухих непроводящих загрязнений)
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к климатическим воздействиям при эксплуатации прибор соответствует группе исполнения В4 по ГОСТ Р 52931–2008.

По устойчивости к механическим воздействиям при эксплуатации прибор соответствует группе исполнения N1 по ГОСТ Р 52931— 2008 (частота вибрации от 10 до 55 Гц).

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 по ГОСТ Р 52931–2008.

Прибор отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ 30804.6.2–2013.

По уровню излучения радиопомех (помехоэмиссии) прибор соответствует нормам, установленным для оборудования класса A по ГОСТ Р 51318.22 (СИСПР 22–97).

Прибор устойчив к прерываниям, провалам и выбросам напряжения питания:

- для переменного тока в соответствии с требованиями ГОСТ 30804.4.11–2013 (степень жесткости PS2);
- для постоянного тока в соответствии с требованиями ГОСТ IEC 61131–2–2012 – длительность прерывания напряжения питания до 10 мс включительно, длительность интервала от 1 с и более.

14 Техническое обслуживание

Обслуживание прибора при эксплуатации заключается в его техническом осмотре. При выполнении работ следует соблюдать меры безопасности, изложенные в *разделе 7*.

Технический осмотр прибора проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:

- очистку корпуса, а также его клеммных колодок от пыли, грязи и посторонних предметов;
- проверку крепления на DIN-рейке;
- проверку качества подключения внешних связей.

Обнаруженные во время осмотра недостатки следует немедленно устранить.

15 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

16 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

17 Транспортирование и хранение

Прибор транспортируется в закрытом транспорте любого вида. Крепление тары в транспортных средствах должно производиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до +75 °C с соблюдением мер защиты от ударов и вибраций.

Перевозка осуществляется в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150— 69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

18 Комплектность

Наименование	Количество		
Контроллер*	1 шт.		
Руководство по эксплуатации	1 экз.		
Паспорт и Гарантийный талон	1 экз.		
Комплект клеммных соединителей	1 к-т		
Кабель USB-miniUSB	1 шт.		
* Исполнение в соответствии с заказом.			

ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

19 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 12 месяцев со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Настройка регулятора

Проводить ручную настройку регулятора следует в режиме нагрева. Настройки регулятора расположены в меню **Меню/Настройки/Калорифер НВ/ПИ-регулятор/Ти**. В ходе наблюдений фиксировать значения регулируемого параметра (скорость и время подхода к уставке).

Ручная настройка осуществляется итерационным методом с оценкой процесса по показателям:

- наличию колебаний;
- наличию перехода графика регулируемой величины через уставку.

В зависимости от показателей, корректировка осуществляется по рекомендациям:

- увеличение **K**_п способствует увеличению колебаний регулируемой величины и амплитуда колебаний регулируемой величины может возрасти до недопустимого уровня;
- уменьшение **K**_п способствует снижению быстродействия и ухудшается быстродействие регулятора с повышением вероятности колебаний регулируемой величины;
- при завышенном T_и процесс подхода регулируемой величины к уставке становится односторонним даже при наличии колебаний. Быстродействие регулятора уменьшается;
- при заниженном T_и появляется значительный переход регулируемой величины через уставку. Но существенно ухудшается быстродействие регулятора и повышается вероятность колебаний регулируемой величины.

При оптимальной настройке регулятора график регулируемой величины должен иметь минимальное значение показателя ошибки регулирования (A_1) при достаточной степени затухания $\phi = 1 - A_3/A_1 = 0.8 \dots 0.9$.

Для настройки регулятора выполнить следующие действия:

- 1. Задать заводские уставки, если значения коэффициентов изменялись.
- 2. Изменять значение **К**_п (на единицы), пока значение перерегулирования не будет 5 °C.
- 3. Уменьшать $\mathbf{T}_{\mathbf{u}}$, пока отклонение от уставки не будет 2—3 °C.
- 4. Уменьшать $\mathbf{K}_{\mathbf{n}}$, (на единицы) до достижения недорегулирования.
- 5. Уменьшать T_{μ} , пока отклонение от уставки не будет 1 °C.

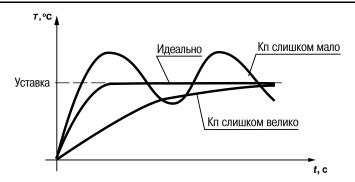


Рисунок А.1 – Влияние К_п на выход на уставку

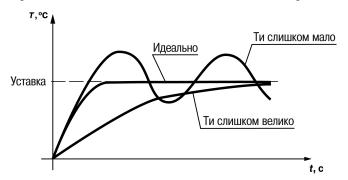


Рисунок A.2 – Влияние T_и на выход на уставку

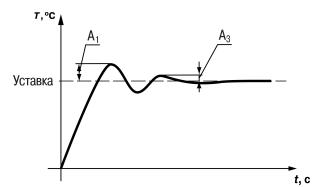


Рисунок А.3 – Оценка ошибки регулирования

Приложение Б. Установка времени и даты

ВНИМАНИЕ

Настройка часов реального времени осуществляется на заводе при изготовлении прибора. Производить коррекцию необходимо только если параметры даты и времени не соответствуют действительному значению.

В приборе реализованы энергонезависимые часы реального времени, время и дата поддерживаются даже в случае отключения основного питания.

Просмотр и редактирование текущего времени и даты доступны из меню Системного меню — Часы.

Стартовый экран ALT 6 c Системное меню ->Прибор ОК ESC Прибор ->Версия ¥ **** Прибор ->Часы OK ESC Дата Время

Рисунок Б.1 – Схема доступа к меню настройки времени и даты

Центральный офис: 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

Тел.: (495) 641-11-56 (многоканальный)

Факс: (495) 728-41-45

www.owen.ru

Отдел сбыта: sales@owen.ru

Группа тех. поддержки: support@owen.ru

Рег. 2726

3ак. №